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OBJECTIVES
Dynamical MagnetoElectric

Properties of BiFeO3.

Investigate Electromagnons 
in BiFeO3.

Reveal alternatives to 
electromagnons.
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H. Naganuma, (ed. Lallart, M.) InTech, 2011

STRUCTURE OF BiFeO3 AS A PROTOTYPE OF MULTIFERROICS
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DIRECT MAGNETOELECTRICITY
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INDIRECT (STRAIN-INDUCED)
MAGNETOELECTRICITY
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Quadratic MagnetoElectric Constant
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Quadratic MagnetoElectric Constant

• In presence of only a magnetic field

• If the magnitude of the applied magnetic field is large
enough, the effect of linear ME coefficient can be neglected
in comparison with the quadratic coefficient

and       : Linear and Quadratic magnetoelectric (ME) Coefficients
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o Technique: Effective Hamiltonian1

ü Accuracy of first principles methods

üNot limited to T= 0 K

üNot limited to small cells

o Simulation type: Molecular Dynamics2 (MD)

o : 0.5 fs, cells:12x12x12,

o Temperature: 1 K (In order to have better statistics T=1 K)

o DC Magnetic field along

o AC Magnetic field along (𝜔: to be changed in each simulation)

o Material: BiFeO3 (Bulk)

[1] Adv. Funct. Mater. 23, 234 (2003) by S. Prosandeev et al.
[2] Phys Rev. Lett. 109, 067203 (2012) by D. Wang et al.

ATOMISTIC SIMULATIONS
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ATOMISTIC SIMULATIONS

Clamped simulations: frozen
supercell lattice vectors (strain
fixed)

Unclamped simulations:
homogeneous strain allowed to 

change (strain relaxed)

1

2
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• Polarization follows magnetic
field (magnetoelectricity
verified!)

• Existence of dual vibrations
with the frequencies of
phonons around 4320 and
7000 GHz (electromagnonic
nature of BFO!)

• Existence of the second
harmonic

Case 1: Strain Fixed

S. Sayedaghaee et al., Phys. Rev. Lett. 122, 097601 (2019).
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• Additional vibrations with the
frequencies of about 90 and
267 GHz are observed

• Existence of what we coined
electroacoustic magnon
quasiparticles – that mix
optical phonons, acoustic
phonons and magnons

Case 2: Strain Relaxed

S. Sayedaghaee et al., Phys. Rev. Lett. 122, 097601 (2019).
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• The 267 GHz mechanical resonance corresponds to oscillations of
diagonal strain components, , whereas the origin of the
frequency of 90 GHz is found in the shear components of the strain

Case 2: Strain Relaxed

S. Sayedaghaee et al., Phys. Rev. Lett. 122, 097601 (2019).
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• Model Hamiltonian:

• Newtonian dynamical equations:

Model

mass harmonic 
constant

anharmonic
constant

Bi-quadratic ME effect

electric field

electrostriction

magnetostriction

elastic 
constant
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Model

• 𝛽(0,𝜔*) couples the dc and ac fields

• 𝛽(𝜔*,𝜔*) couples the ac field with itself
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Model

• 𝛽(0,𝜔*) generates a signal at 𝜔*.

• Resonances:
• 𝜔* ≈ 𝜔-./010
• 𝜔* ≈ 𝜔231010
• 𝜔* ≈ 𝜔4
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Model

• 𝛽(𝜔*,𝜔*) generates a signal at 2𝜔* (Second Harmonic Generation).

• Resonances:
• 𝜔* ≈ 𝜔-./010
• 𝜔* ≈

6789:9:
;

• 𝜔* ≈
6<
;
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For the case of BFO adopting 109° multidomains
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Results for Magnetoelectric response

• 109˚ multidomain structure: monodomain frequencies still observed.

• Specific additional vibrations at 390 and 1150 GHz, independent of strain fixed
or relaxed à localized electromagnons in the DW.
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CONCLUSIONS
Mechanical strain leads to the formation of new quasiparticles
(electroacoustic magnons) that takes part in the enhancement
of magnetoelectric responses for both cases of monodomain
and multidomain structures.

Design and development of novel devices by (1) tailoring the
shape and size of the samples to tune the resonance
frequency of the electroacoustic magnons; (2) using localized
electromagnons (in the multidomain case)

Due to the generality of our theoretical model, it can be
applied to a wide scope of materials as well as non-linear
physics.


