

Institut Néel - CNRS Institut Laue Langevin

Qu'est un électromagnon? (What is an electromagnon?)

Marie-Bernadette Lepetit

¹Institut Néel - CNRS - 25 rue des Martyrs - Grenoble - France ²Institut Laue Langevin - 71 avenue des Martyrs - Grenoble - France

GdR MEETICC Electromagnons - Orsay, 20-21 novembre 2019

Ouline

- Electromagnon in the literature
- Electro-active magnon from an ab-initio point of view
 - Back to basics
 - Within the BO approximation
 - Breaking the BO approximation (entangled phonon-magnon state)
- Conclusion

Definitions found in the literature

- mixed magnon-phonon mode
- electroactive magnon
- elementary excitations if multiferroic compounds

Definitions found in the literature

- mixed magnon-phonon mode
- electroactive magnon
- elementary excitations if multiferroic compounds

Two non equivalent definitions

Definitions found in the literature

- mixed magnon-phonon mode
- electroactive magnon
- elementary excitations if multiferroic compounds

Not specific to multiferroics Electromagnons Multiferroics Usual magnons & phonons Electromagnons in multiferroics

Non-electroactive mixed phonon-magnon mode: YMnO₃

Phonons dispersion.

S. Petit et al, Pramana 71, 869 (2008).

Non-electroactive mixed phonon-magnon mode: YMnO₃

Phonons dispersion.

S. Petit et al, Pramana 71, 869 (2008).

INS SF, NSP

S. Pailhès et al, PRB 79, 134409 (2009).

Non-electroactive mixed phonon-magnon mode: YMnO₃

Phonons dispersion.

S. Petit et al, Pramana 71, 869 (2008).

INS SF, NSP

S. Pailhès et al, PRB 79, 134409 (2009).

No electromagnon observed in Raman & THz

C. Toulouse et al, PRB 89, 094415 (2014)

YMnO₃

- Mixed phonon-magnon mode
- Non electroactive

YMnO₃

- Mixed phonon-magnon mode
- Non electroactive

∃ symmetry forbidden phonon-magnon mixed modes

YMnO₃

• Magnon modes seen in THz

C. Toulouse et al, PRB 89, 094415 (2014)

 $\begin{cases} & \text{Magnons can be} \\ \Longrightarrow & \text{excited by light } (\vec{H}) \\ & \text{Electromagnons ?} \end{cases}$

YMnO₃

- Mixed phonon-magnon mode
- Non electroactive

∃ symmetry forbidden phonon-magnon mixed modes

YMnO₃

C. Toulouse et al, PRB 89, 094415 (2014)

 $\begin{array}{c} \text{MnO}_3 \\ \bullet \text{ Magnon modes seen in THz} \\ \text{ }_{\text{C. Toulouse }\textit{et al}, \, PRB \, \textbf{89}, \, 094415 \, (2014)} \end{array} \end{array} \begin{array}{c} \text{Magnons can be} \\ \bullet \text{ excited by light } (\vec{H}) \\ \bullet \text{ Electromagnons ?} \end{array}$

$Ba_2Mg_2Fe_{12}O_{22}$

N. Kida et al, PRB 80, 220406R (2009)

● Electromagnon in PE phase

Not multiferroic elementary excitation

Not multiferroic elementary excitation

Ouline

- Electromagnon in the literature
- Electro-active magnon from an ab-initio point of view
 - Back to basics
 - Within the BO approximation
 - Breaking the BO approximation (entangled phonon-magnon state)
- Conclusion

Back to the basics

Mixed phonon-magnon mode ⇒ breaking the BO approximation

Back to the basics

Mixed phonon-magnon mode ⇒ breaking the BO approximation

The BO approximation

$$\hat{H} = \hat{T}^e + \hat{V}^{ee} + \hat{V}^{eN} + \hat{T}^N + \hat{V}^{NN}$$

Back to the basics

Mixed phonon-magnon mode ⇒ breaking the BO approximation

The BO approximation

$$\hat{H} = \hat{T}^e + \hat{V}^{ee} + \hat{V}^{eN} + \hat{T}^N + \hat{V}^{NN}$$

Decoupling of nuclear & electronic motions

$$\hat{H} \longrightarrow \left\{ \begin{array}{ll} \hat{H}^e(\vec{r}_i, \vec{R}_n) & = & \hat{T}^e + \hat{V}^{ee} + \hat{V}^{eN} \\ \hat{H}^N(\vec{R}_n, E^e(\vec{R}_n)) & = & \hat{T}^N + \hat{V}^{NN} + E^e(\vec{R}_n) \end{array} \right.$$

Back to the basics

Mixed phonon-magnon mode ⇒ breaking the BO approximation

The BO approximation

$$\hat{H} = \hat{T}^e + \hat{V}^{ee} + \hat{V}^{eN} + \hat{T}^N + \hat{V}^{NN}$$

Decoupling of nuclear & electronic motions

$$\hat{H} \longrightarrow \begin{cases} \hat{H}^{e}(\vec{r}_{i},\vec{R}_{n}) &= \hat{T}^{e} + \hat{V}^{ee} + \hat{V}^{eN} \\ \hat{H}^{N}(\vec{R}_{n},E^{e}(\vec{R}_{n})) &= \hat{T}^{N} + \hat{V}^{NN} + E^{e}(\vec{R}_{n}) \end{cases}$$

$$\hat{H}^{\theta}(\vec{r}_{i},\vec{R}_{n}) |\psi_{j}(\vec{r}_{i},\sigma_{i},\vec{R}_{n})\rangle = E_{j}^{\theta}(\vec{n}_{n}) |\psi_{j}(\vec{r}_{i},\sigma_{i},\vec{R}_{n})\rangle$$

$$\hat{H}_{j}^{N}(\vec{R}_{n},E_{j}^{\theta}(\vec{n}_{n})) |\xi_{j\nu}(\vec{R}_{n},E_{j}^{\theta})\rangle = \left(E_{j}^{\theta}(\vec{n}_{n})+E_{j\nu}^{N}\right) |\xi_{j\nu}(\vec{R}_{n},E_{j}^{\theta})\rangle$$

$$\hat{H} |\Psi_{j\nu}\rangle = \left(E^{\theta}(\vec{n}_{n})+E^{N}\right) |\psi_{j}(\vec{r}_{i},\sigma_{i},\vec{R}_{n})\rangle |\xi_{j\nu}(\vec{R}_{n},E_{j}^{\theta})\rangle$$

Validity of the BO approximation

$$\hat{T}^N |\psi(\vec{r}_i, \vec{R}_n)\rangle \simeq 0$$

Validity of the BO approximation

$$\hat{T}^N | \psi(\vec{r}_i, \vec{R}_n) \rangle \simeq 0$$

Beacking the BO approximation

$$\langle \psi_I | \hat{T}^N | \psi_j \rangle \neq 0$$

Validity of the BO approximation

$$\hat{T}^N | \psi(\vec{r}_i, \vec{R}_n) \rangle \simeq 0$$

Beacking the BO approximation

$$\langle \psi_I | \hat{T}^N | \psi_j \rangle \neq 0$$

Mixed phonon-magnon mode (2 magnons)

$$\begin{array}{lcl} \hat{H} & |\Psi\rangle & = & E & |\Psi\rangle \\ & |\Psi(\vec{r}_{i},\sigma_{i},\vec{n}_{n})\rangle & = & \sum_{\nu} c_{j,\nu} \left|\psi_{j}(\vec{r}_{i},\sigma_{i},\vec{n}_{n})\right\rangle \left|\xi_{j\nu}(\vec{n}_{n},\epsilon_{j}^{e})\right\rangle + \sum_{\mu} c_{l,\mu} \left|\psi_{l}(\vec{r}_{i},\sigma_{i},\vec{n}_{n})\right\rangle \left|\xi_{l\mu}(\vec{n}_{n},\epsilon_{j}^{e})\right\rangle \\ \end{array}$$

Ouline

- Electromagnon in the literature
- Electro-active magnon from an ab-initio point of view
 - Back to basics
 - Within the BO approximation
 - Breaking the BO approximation (entangled phonon-magnon state)
- Conclusion

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0, \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \overrightarrow{d} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \overrightarrow{d} = \overrightarrow{d_e} + \overrightarrow{d_N}$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	
Final state	$ \psi_0\xi_{0{\color{black} u}} angle$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	
Final state	$ \psi_0 \xi_{0 m{ u}} angle$	
$\hbar\omega$	$E_{0\nu}^{N} - E_{00}^{N}$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	
Final state	$ \psi_0\xi_{0m{ u}} angle$	
$\hbar\omega$	$E_{0\nu}^{N} - E_{00}^{N}$	
Coupling	$\langle \xi_{0\nu} \overrightarrow{d_N} \cdot \vec{\mathcal{E}}_0 \xi_{00} \rangle$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	$ \psi_0\xi_{00}\rangle$
Final state	$ \psi_0 \xi_{0 \nu} \rangle$	
$\hbar\omega$	$E_{0\nu}^{N} - E_{00}^{N}$	
Coupling	$\langle \xi_{0\nu} \overrightarrow{d_N} \cdot \vec{\mathcal{E}}_0 \xi_{00} \rangle$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	$ \psi_0\xi_{00}\rangle$
Final state	$ \psi_0\xi_{0m{ u}} angle$	$ \psi_{j}\xi_{00}\rangle = \psi_{j}\rangle \sum_{\mu} \alpha_{00}^{j\mu} \xi_{j\mu}\rangle$
$\hbar\omega$	$E_{0\nu}^{N} - E_{00}^{N}$	
Coupling	$\langle \xi_{0 \nu} \widehat{\vec{d}_N} \cdot \vec{\mathcal{E}}_0 \xi_{0 0} \rangle$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	ψ ₀ ξ ₀₀ ⟩
Final state	$ \psi_0\xi_{0oldsymbol{ u}} angle$	$ \psi_{\pmb{j}}\xi_{00}\rangle = \psi_{\pmb{j}}\rangle \sum_{\mu} \alpha_{00}^{j\mu} \xi_{\pmb{j}\mu}\rangle$
$\hbar\omega$	$E_{0\nu}^{N} - E_{00}^{N}$	$[E_j^e + E_{j\mu}^N] - [E_0^e + E_{00}^N]$
Coupling	$\langle \xi_{0 \nu} \widehat{\vec{d}_N} \cdot \vec{\mathcal{E}}_0 \xi_{00} \rangle$	

Application of an electric field within the dipolar approx.

$$\hat{H} + \hat{V} = \hat{H} - \frac{1}{\hbar \omega} \left[\hat{H}_0 , \hat{\vec{d}} \cdot \vec{\mathcal{E}}_0 \right] \text{ with } \hat{\vec{d}} = \hat{\vec{d}}_e + \hat{\vec{d}}_N$$

	Phonons transition	Electronic/magnon transition
Init. state	$ \psi_0\xi_{00}\rangle$	$ \psi_0\xi_{00}\rangle$
Final state	$ \psi_0\xi_{0m{ u}} angle$	$ \psi_{\pmb{j}}\xi_{00}\rangle = \psi_{\pmb{j}}\rangle \sum_{\mu} \alpha_{00}^{j\mu} \xi_{\pmb{j}\mu}\rangle$
$\hbar\omega$	$E_{0\nu}^{N} - E_{00}^{N}$	$[E_j^e + E_{j\mu}^N] - [E_0^e + E_{00}^N]$
Coupling	$\langle \xi_{0\nu} \overrightarrow{d}_N \cdot \vec{\mathcal{E}}_0 \xi_{00} \rangle$	$\langle \psi_{m{j}} \overrightarrow{d}_{ m e} \cdot ec{\mathcal{E}}_{ m 0} \psi_{ m 0} angle$

Spin-charge decoupling

Usual representation

- Nuclear, electronic motions decoupling (BO approximation) $|\Psi(\vec{r}_i,\sigma_i,\vec{R}_n)\rangle = |\psi(\vec{r}_i,\sigma_i,\vec{R}_n)\rangle |\xi(\vec{R}_n)\rangle$
- Decoupling of electronic and spin degrees of freedom

$$|\Psi(\vec{r_i},\sigma_i,\vec{R}_n)\rangle = \underbrace{|\zeta(\sigma_i,\vec{r_i},\vec{R}_n)\rangle}_{spin} \underbrace{|\phi(\vec{r_i},\vec{R}_n)\rangle}_{charge} \underbrace{|\xi(\vec{R}_n)\rangle}_{phonon}$$

Spin-charge decoupling

Usual representation

- Nuclear, electronic motions decoupling (BO approximation) $|\Psi(\vec{r}_i.\sigma_i.\vec{R}_n)\rangle = |\psi(\vec{r}_i.\sigma_i.\vec{R}_n)\rangle |\mathcal{E}(\vec{R}_n)\rangle$
- Decoupling of electronic and spin degrees of freedom $|\Psi(\vec{r}_i,\sigma_i,\vec{R}_n)\rangle = |\zeta(\sigma_i,\vec{r}_i,\vec{R}_n)\rangle |\phi(\vec{r}_i,\vec{R}_n)\rangle |\xi(\vec{R}_n)\rangle$

$$|\Psi(\vec{r}_i,\sigma_i,\vec{R}_n)\rangle = \underbrace{|\zeta(\sigma_i,\vec{r}_i,\vec{R}_n)\rangle}_{spin} \underbrace{|\phi(\vec{r}_i,\vec{R}_n)\rangle}_{charge} \underbrace{|\xi(\vec{R}_n)\rangle}_{phonon}$$

Action of electric field

• $\langle \psi_j | \widehat{\vec{d}_e} \cdot \vec{\mathcal{E}}_0 | \psi_0 \rangle$ acts on charge part (Ex : modification of space part of magn. orb.)

How can electric field act on magnons?

Usual spin Hamiltonians

- Heisenberg : $\sum_{i,j} J_{ij} \hat{\vec{S}}_i \cdot \hat{\vec{S}}_j \to \text{unique space part for all spin states}$
 - unique definition of supporting magnetic orbital

Usual spin Hamiltonians

- Heisenberg : $\sum_{i,j} J_{ij} \widehat{\vec{S}}_i \cdot \widehat{\vec{S}}_j \to \text{unique space part for all spin states}$
 - unique definition of supporting magnetic orbital
- SO effects
 - single ions anisotropy
 - DM interaction

Usual spin Hamiltonians

- Heisenberg : $\sum_{i,j} J_{ij} \widehat{\vec{S}}_i \cdot \widehat{\vec{S}}_j \to \text{unique space part for all spin states}$
 - unique definition of supporting magnetic orbital
- SO effects
 - single ions anisotropy
 - DM interaction

Different space parts according to spin states

Usual spin Hamiltonians

- Heisenberg : $\sum_{i,j} J_{ij} \widehat{\vec{S}}_i \cdot \widehat{\vec{S}}_j \to \text{unique space part for all spin states}$
 - unique definition of supporting magnetic orbital
- SO effects
 - single ions anisotropy
 - DM interaction

Different space parts according to spin states Spin Hamiltonian : not really a spin-space decoupling (no factorisation of WF)

Usual spin Hamiltonians

- Heisenberg : $\sum_{i,j} J_{ij} \widehat{\vec{S}}_i \cdot \widehat{\vec{S}}_j \to \text{unique space part for all spin states}$
 - unique definition of supporting magnetic orbital
- SO effects
 - single ions anisotropy
 - DM interaction

Different space parts according to spin states Spin Hamiltonian : not really a spin-space decoupling (no factorisation of WF)

Action on magnons?

- ullet $\langle \psi_j | \widehat{ec{d}}_{
 m e} \cdot ec{\mathcal{E}}_0 | \psi_0
 angle$ acts on charge part
- Action on magnons ⇒ OK if no spin-charge decoupling

Ouline

- Electromagnon in the literature
- Electro-active magnon from an ab-initio point of view
 - Back to basics
 - Within the BO approximation
 - Breaking the BO approximation (entangled phonon-magnon state)
- Conclusion

$$\left|\psi_{0}\xi_{00}\right\rangle \longrightarrow\left|\Psi\right\rangle =\sum_{\nu}c_{j,\nu}\left|\psi_{j}\right\rangle\left|\xi_{j\nu}\right\rangle +\sum_{\mu}c_{l,\mu}\left|\psi_{l}\right\rangle\left|\xi_{l\mu}\right\rangle$$

Excitation toward a mixed phonon-magnon state

$$\left|\psi_{0}\xi_{00}\right\rangle \longrightarrow\left|\Psi\right\rangle =\sum_{\nu}c_{j,\nu}\left|\psi_{j}\right\rangle \left|\xi_{j\nu}\right\rangle +\sum_{\mu}c_{l,\mu}\left|\psi_{l}\right\rangle \left|\xi_{l\mu}\right\rangle$$

• $\overrightarrow{d^e} \cdot \overrightarrow{\mathcal{E}_0}$ on electronic part : two terms \implies potential increase of the efficiency

$$\left|\psi_{0}\xi_{00}\right\rangle \longrightarrow\left|\Psi\right\rangle =\sum_{\nu}c_{j,\nu}\left|\psi_{j}\right\rangle \left|\xi_{j\nu}\right\rangle +\sum_{\mu}c_{l,\mu}\left|\psi_{l}\right\rangle \left|\xi_{l\mu}\right\rangle$$

- $\vec{d}^e \cdot \vec{\mathcal{E}}_0$ on electronic part : two terms \implies potential increase of the efficiency
- $\overrightarrow{d^N} \cdot \overrightarrow{\mathcal{E}}_0$ on phonon part : requires that GS is also a mixed state involving $|\psi_i\rangle$ and $|\psi_l\rangle$

$$\left|\psi_{0}\xi_{00}\right\rangle \longrightarrow\left|\Psi\right\rangle =\sum_{\nu}c_{j,\nu}\left|\psi_{j}\right\rangle\left|\xi_{j\nu}\right\rangle +\sum_{\mu}c_{l,\mu}\left|\psi_{l}\right\rangle\left|\xi_{l\mu}\right\rangle$$

- $\overrightarrow{d^e} \cdot \overrightarrow{\mathcal{E}_0}$ on electronic part : two terms \implies potential increase of the efficiency
- $\widehat{d^N} \cdot \vec{\mathcal{E}}_0$ on phonon part : requires that GS is also a mixed state involving $|\psi_i\rangle$ and $|\psi_l\rangle$
- Action on magnon ⇒ breaking of spin-charge separation

$$|\psi_0\xi_{00}\rangle \longrightarrow |\Psi\rangle \neq \underbrace{\left(\sum_{\nu} c_{j,\nu} \left|\phi_j\right\rangle \left|\xi_{j\nu}\right\rangle + \sum_{\mu} c_{l,\mu} \left|\phi_l\right\rangle \left|\xi_{l\mu}\right\rangle\right)}_{entangled\ charge-phonons} \underbrace{\left|\zeta_m\right\rangle}_{spin}$$

$$\left|\psi_{0}\xi_{00}\right\rangle \longrightarrow\left|\Psi\right\rangle =\sum_{\nu}c_{j,\nu}\left|\psi_{j}\right\rangle\left|\xi_{j\nu}\right\rangle +\sum_{\mu}c_{l,\mu}\left|\psi_{l}\right\rangle\left|\xi_{l\mu}\right\rangle$$

- $\vec{d}^e \cdot \vec{\mathcal{E}}_0$ on electronic part : two terms \implies potential increase of the efficiency
- $\widehat{d^N} \cdot \vec{\mathcal{E}}_0$ on phonon part : requires that GS is also a mixed state involving $|\psi_i\rangle$ and $|\psi_l\rangle$
- Action on magnon ⇒ breaking of spin-charge separation

$$|\psi_0\xi_{00}\rangle\longrightarrow|\Psi\rangle=\left(\sum_{\nu}c_{j,\nu,p}\left|\zeta_{p}\rangle\left|\phi_{j}\right\rangle\left|\xi_{j\nu}\right\rangle+\sum_{\mu}c_{l,\mu,q}\left|\zeta_{q}\rangle\left|\phi_{l}\right\rangle\left|\xi_{l\mu}\right\rangle\right)$$

Electro-active magnon

Not a specific to mutiferroics

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state
- Requires coupled spin-charge degrees of freedom

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state
- Requires coupled spin-charge degrees of freedom
- Favored by spin-induced magneto-electric effects

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state
- Requires coupled spin-charge degrees of freedom
- Favored by spin-induced magneto-electric effects

Mixed (entangled) phonon-magnon excited state

Not necessarily electro-active

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state
- Requires coupled spin-charge degrees of freedom
- Favored by spin-induced magneto-electric effects

Mixed (entangled) phonon-magnon excited state

- Not necessarily electro-active
- Cannot be alone, associated with mixed phonon-magnon GS or other excited state

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state
- Requires coupled spin-charge degrees of freedom
- Favored by spin-induced magneto-electric effects

Mixed (entangled) phonon-magnon excited state

- Not necessarily electro-active
- Cannot be alone, associated with mixed phonon-magnon GS or other excited state
- Coupled spin-charge degrees of freedom required

Electro-active magnon

- Not a specific to mutiferroics
- Does not requires a mixed phonon-magnon state
- Requires coupled spin-charge degrees of freedom
- Favored by spin-induced magneto-electric effects

Mixed (entangled) phonon-magnon excited state

- Not necessarily electro-active
- Cannot be alone, associated with mixed phonon-magnon GS or other excited state
- Coupled spin-charge degrees of freedom required